
Chapter 7

Pondering Polynomials
In This Chapter
▶ Providing techniques for making graphing polynomials easier

▶ Segueing from intercepts to roots of polynomials

▶ Solving polynomial equations using everything but the kitchen sink

The word polynomial comes from poly-, meaning “many,” 
and -nomial, meaning “name” or “designation.” The expo-

nents used in polynomials are all whole numbers — no fractions 
or negatives. Polynomials get progressively more interesting 
as the exponents get larger — they can have more intercepts 
and turning points. This chapter outlines how to deal with 
polynomials: factoring them, graphing them, analyzing them. 
The graph of a polynomial looks like a Wisconsin landscape — 
smooth, rolling curves. Are you ready for this ride?

Sizing Up a Polynomial Equation
A polynomial function is a specific type of function that can be 
easily spotted in a crowd of other types of functions and equa-
tions. By convention, you write the terms from the largest 
exponent to the smallest.

 

The general form for a polynomial function is

Here, the a’s are real numbers and the n’s are whole numbers. 
The last term is technically a0x

0, if you want to show the vari-
able in every term.
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Identifying Intercepts 
and Turning Points

The intercepts of a polynomial are the points where the graph 
of the curve of the polynomial crosses the x-axis and y-axis. 
A polynomial function has exactly one y-intercept, but it can 
have many x-intercepts, depending on the degree of the poly-
nomial (the highest power of the variable). The higher the 
degree, the more x-intercepts are possible.

The x-intercepts of a polynomial are also called the roots, 
zeros, or solutions. The x-intercepts are often where the graph 
of the polynomial goes from positive values (above the x-axis) 
to negative values (below the x-axis) or from negative values 
to positive values. Sometimes, though, the values on the graph 
don’t change sign at an x-intercept: These graphs look sort of 
like a touch and go. The curves approach the x-axis, seem to 
change their minds about crossing the axis, touch down at the 
intercepts, and then go back to the same side of the axis.

A turning point of a polynomial is where the graph of the curve 
changes direction. It can change from going upward to going 
downward, or vice versa. A turning point is where you find a 
maximum value of the polynomial or a minimum value.

Interpreting relative value 
and absolute value
A parabola opening downward has an absolute maximum — 
you see no point on the curve that’s higher than the maximum. 
In other words, no value of the function is greater than the 
function value at that point. Some functions, however, also 
have relative maximum or minimum values:

 ✓ Relative maximum: A function value that is bigger than all 
function values around it — it’s relatively large. The func-
tion value is bigger than anything around it, but you may 
be able to find a bigger function value somewhere else.

 ✓ Relative minimum: A function value that is smaller 
than all function values around it. The function value 
is smaller than anything close to it, but there may be a 
function value that’s smaller somewhere else.
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In Figure 7-1, you can see five turning points. Two correspond 
to relative maximum values, which means they’re higher than 
any points close to them. Three correspond to minimum 
values, which means they’re lower than any points around 
them. Two of the minimums correspond to relative minimum 
values, and one has absolutely the lowest function value on 
the curve. This function has no absolute maximum value 
because it keeps going up and up without end.
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Figure 7-1: Extreme points on a polynomial.

Dealing with intercepts 
and turning points
The number of potential turning points and x-intercepts of a 
polynomial function is good to know when you’re sketching 
the graph of the function. You can often count the number of 
x-intercepts and turning points of a polynomial if you have the 
graph of it in front of you, but you can also make an estimate 
of the number if you have the equation of the polynomial. 
Your estimate is actually a number that represents the most 
points that can occur.

 

Given the polynomial 
, the maximum 

number of x-intercepts is n, the degree or highest power of 
the polynomial. The maximum number of turning points is 
n – 1, or one less than the number of possible intercepts. You 
may find fewer x-intercepts than n, or you may find exactly 
that many.
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Examine the function equations for intercepts and turning 
points:

f(x) = 2x7 + 9x6 – 75x5 – 317x4 + 705x3 + 2,700x2

This graph has at most seven x-intercepts (7 is the highest 
power in the function) and six turning points (7 – 1).

You can see the graph of the function in Figure 7-2. According 
to its equation, the graph of the polynomial could have as 
many as seven x-intercepts, but it has only five; it does have 
all six turning points, though. You can also see that two of 
the intercepts are touch-and-go types, meaning that they 
approach the x-axis before heading away again.

y

10,000

x1

Figure 7-2:  The intercept and turning-point behavior of a polynomial 
function.

Solving for y-intercepts 
and x-intercepts
You can easily solve for the y-intercept of a polynomial func-
tion; the y-intercept is where the curve of the graph crosses the 
y-axis, and that’s when x = 0. So, to determine the y-intercept 
for any polynomial, simply replace all the x’s with zeros 
and solve for y (that’s the y part of the coordinates of that 
intercept). For example, in y = 3x4 – 2x2 + 5x – 3, you get y = 
3(0)4 – 2(0)2 + 5(0) – 3 = –3, so the y-intercept is (0, –3).

After you complete the easy task of solving for the y-intercept, 
you find out that the x-intercepts are another matter altogether. 
The value of y is 0 for all x-intercepts, so you let y = 0 and solve. 
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When the polynomial is factorable, you use the multiplication 
property of zero (MPZ; see Chapter 1), setting the factored 
form equal to 0 to find the x-intercepts.

 

Determine the x-intercepts of the polynomial y = x3 – 16x.

Replace the y with zeros and solve for x:

0 = x3 – 16x = x(x2 – 16) = x(x – 4)(x + 4)

Using the MPZ, you get that x = 0, x = 4, or x = –4. The 
x-intercepts are (0, 0), (4, 0), and (–4, 0).

Determining When a Polynomial 
Is Positive or Negative

When a polynomial has positive y-values for some interval — 
between two x-values — its graph lies above the x-axis in that 
interval. When a polynomial has negative values, its graph lies 
below the x-axis in that interval. The only way for a polyno-
mial to change from positive to negative values or vice versa 
is to go through 0 — at an x-intercept.

Incorporating a sign line
If you’re a visual person like me, you’ll appreciate the interval 
method I present in this section. Using a sign line and marking 
the intervals between x-values allows you to determine where 
a polynomial is positive or negative, and it appeals to your 
artistic bent!

 

Determine when the function f(x) = x(x – 2)(x – 7)(x + 3) is 
positive and when it’s negative.

Setting f(x) = 0 and solving, you find that the x-intercepts are 
at x = 0, 2, 7, and –3. To determine the positive and negative 
intervals for a polynomial function, follow this method:

 1. Draw a number line, and place the values of the 
x-intercepts in their correct positions on the line.

  -3 0 2 7
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 2. Choose random values to the right of and left of and 

in between the intercepts to test whether the func-
tion is positive or negative in those intervals.

  One efficient method is to insert the “test values” into 
the factored form of the polynomial and just record 
the signs — which then give you the positive or nega-
tive result for the entire interval.

  +
(–)(–)(–)(–)

–
(–)(–)(–)(+)

+
(+)(–)(–)(+)

+
(+)(+)(+)(+)

–
(+)(+)(–)(+)

–3 0 2 7

 

 You need to check only one point in each interval; 
the function values all have the same sign within that 
interval.

  The graph of this function is positive, or above the 
x-axis, whenever x is smaller than –3, between 0 and 2, 
or bigger than 7. You write this part of the answer as: 
x < –3 or 0 < x < 2 or x > 7. The graph of the function is 
negative when –3 < x < 0 or 2 < x < 7.

Recognizing a sign change rule
In the previous example, you see the signs changing at each 
intercept. If the signs of functions don’t change at an inter-
cept, then the graph of the polynomial doesn’t cross the x-axis 
at that intercept, and you see a touch-and-go. It’s nice to be 
able to predict such behavior.

The rule for whether a function displays sign changes or not 
at the intercepts is based on the exponent on the factor that 
provides you with a particular intercept.

 

If a polynomial function is factored in the form 
, you see a sign change at a1 when-

ever n1 is an odd number (meaning it crosses the x-axis), 
and you see no sign change whenever n1 is even (meaning 
the graph of the function is touch-and-go; see the “Dealing 
with intercepts and turning points” section, earlier in this 
chapter).
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So, for example, with the function y = x4(x – 3)3(x + 2)8(x + 5)2, 
you’ll find a sign change at x = 3 and no sign change at x = 0, 
–2, or –5. And with the function y = (2 – x)2(4 – x)2(6 – x)2(2 + x)2, 
you never see a sign change — the function is always either 
positive or just touching the x-axis.

Solving Polynomial Equations
Finding intercepts (or roots or zeros) of polynomials can be 
relatively easy or a little challenging, depending on the com-
plexity of the function. Polynomials that factor easily are very 
desirable. Polynomials that don’t factor at all, however, are 
relegated to computers or graphing calculators.

The polynomials that remain are those that factor — but take a 
little planning and work. The planning process involves count-
ing the number of possible positive and negative real roots and 
making a list of potential rational roots. The work is done using 
synthetic division to test the list of choices to find the roots.

Factoring for roots
Finding x-intercepts of polynomials isn’t difficult — as long 
as you have the polynomial in nicely factored form. You just 
set the y equal to 0 and use the MPZ. This section deals with 
easily recognizable factors of polynomials; I cover other, more 
challenging types in the following sections.

Half the battle when factoring is recognizing the patterns in 
factorable polynomial functions. Here are the most easily rec-
ognizable factoring patterns used on polynomials:

 ✓ Difference of squares: a2 – b2 = (a + b)(a – b).

 ✓ Greatest common factor (GCF): ab ± ac = a(b ± c).

 ✓ Difference of cubes: a3 – b3 = (a – b)(a2 + ab + b2).

 ✓ Sum of cubes: a3 + b3 = (a + b)(a2 – ab + b2).

 ✓ Perfect square trinomial: a2 ± 2ab + b2 = (a ± b)2.

 ✓ Trinomial factorization: UnFOIL (see Chapter 1).

 ✓ Common factors in groups: Grouping (see Chapter 1).
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The following examples incorporate the different methods 
of factoring. They contain perfect cubes and squares and all 
sorts of good combinations of factorization patterns.

 

Factor the polynomial: y = 4x5 – 25x3.

First use the GCF and then the difference of squares:

y = 4x5 – 25x3 = x3(4x2 – 25) = x3(2x – 5)(2x + 5)

 

Factor the polynomial: y = 64x8 –64x6 – x2 + 1.

You initially factor the polynomial by grouping. The first two 
terms have a common factor of 64x6, and the second two 
terms have a common factor of –1. The new equation has a 
common factor of x2 – 1. After performing the factorization, 
you see that both factors are the difference of squares:

Now you factor the binomials as the difference of perfect 
squares. Then you can factor the last two new binomials using 
the difference and sum of two perfect cubes:

 

The two trinomials resulting from factoring the difference and 
sum of cubes don’t factor, so you’re done. Whew!

Taking sane steps with the 
rational root theorem
What do you do if the factorization of a polynomial doesn’t 
leap out at you? You have a feeling that the polynomial fac-
tors, but the necessary numbers escape you. Never fear! The 
rational root theorem is here.
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The rational root theorem states that if the polynomial 
 has any ratio-

nal roots, they all meet the requirement that you can write 

 them as a fraction equal to .

In other words, according to the theorem, any rational root 
of a polynomial with integer coefficients is formed by divid-
ing a factor of the constant term by a factor of the lead coef-
ficient. Of course, this means that the a0 term, the constant, 
cannot be 0.

Taking the first step

 

The rational root theorem creates a list of numbers that may 
be roots of a particular polynomial. After using the theorem 
to make your list of potential roots, you plug the numbers into 
the polynomial to determine which, if any, work. You may run 
across an instance where none of the candidates work, which 
tells you that there are no rational roots. (And if a given ratio-
nal number isn’t on the list of possibilities that you come up 
with, it can’t be a root of that polynomial.)

Before you start to plug and chug, however, check out the 
“Putting Descartes in charge of signs” section, later in this 
chapter — it helps you with your guesses. Also, you can refer 
to “Finding Roots Synthetically,” later in this chapter, for a 
quicker method than plugging in.

To find the rational roots of the polynomial y = x4 – 3x3 + 2x2 + 12, 
for example, you test the following possibilities: ±1, ±2, ±3, ±4, 
±6, and ±12. These values are all the factors of the number 12. 
Technically, you divide each of these factors of 12 by the fac-
tors of the lead coefficient, but because the lead coefficient is 
one (as in 1x4), dividing by that number won’t change a thing.

 

Find the roots of the polynomial y = 6x7 – 4x4 – 4x3 + 2x – 20.

You first list all the factors of 20: ±1, ±2, ±4, ±5, ±10, and ±20. 
Now divide each of those factors by the factors of 6. You don’t 
need to bother dividing by 1 to create your list, but you need 

to divide each by 2, 3, and 6: , , , , , , , , 

, , , , , , , , , . And, of course, 

you include : ±1, ±2, ±4, ±5, ±10, and ±20 as candidates.
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You may have noticed some repeats in the previous list 
that occur when you reduce fractions. You can discard the 
repeats. And, even though this looks like a mighty long list, 
between the integers and fractions, it still gives you a reason-
able number of candidates to try out. You can check them off 
in a systematic manner.

Changing from roots to factors
When you have the factored form of a polynomial and set it 
equal to 0, you can solve for the solutions (or x-intercepts, 
if that’s what you want). Just as important, if you have the 
solutions, you can go backward and write the factored form. 
Factored forms are needed when you have polynomials in 
the numerator and denominator of fractions and you want 
to reduce the fraction. Factored forms are easier to compare 
with one another.

How can you use the rational root theorem to factor a poly-
nomial function? Why would you want to? The answer to 
the second question, first, is that you can reduce a factored 
form if it’s in a fraction. Also, a factored form is more easily 
graphed. Now, for the first question: You use the rational root 
theorem to find roots of a polynomial and then translate those 
roots into binomial factors whose product is the polynomial.

 

If  is a root of the polynomial f(x), the corresponding 

 binomial (ax – b) is a factor.

 

Write the factorization of a polynomial with the five roots x = 

 1, x = –2, x = 3, , and .

Applying the rule, you get f(x) = (x – 1)(x + 2)(x – 3)(2x – 3)
(2x + 1). Notice that the positive roots give factors of the form 
x – c, and the negative roots give factors of the form x + c, 
which comes from x – (–c). This is just one polynomial with 
these five roots. You can write other polynomials by multiply-
ing the factorization by some constant.

To show multiple roots, or roots that occur more than once, use 
exponents on the factors. For example, if the roots of a polyno-
mial are x = 0, x = 2, x = 2, x = –3, x = –3, x = –3, x = –3, and x = 4, 
a corresponding polynomial is f(x) = x(x – 2)2(x + 3)4(x – 4).
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Putting Descartes 
in charge of signs
Descartes’ rule of signs tells you how many positive and nega-
tive real roots you may find in a polynomial. A real number is 
just about any number you can think of. It can be positive or 
negative, rational or irrational. The only thing it can’t be is 
imaginary.

Counting up the number of possible positive roots
The first part of the rule of signs helps you identify how many 
of the roots of a polynomial are positive.

 

Descartes’ rule of signs (part I): The polynomial 

 has at most 
n roots. Count the number of times the sign changes in the 
coefficients of f, and call that value p. The value of p is the 
maximum number of positive real roots of f. If the number of 
positive roots isn’t p, it is p – 2, p – 4, or some number less by 
a multiple of 2.

 

Use part I of Descartes’ rule of signs on the polynomial 
f(x) = 2x7 – 19x6 + 66x5 – 95x4 + 22x3 + 87x2 – 90x + 27.

Count the number of sign changes. The sign of the first term 
starts as a positive, changes to a negative, and moves to posi-
tive; negative; positive; stays positive; negative; and then posi-
tive. Whew! In total, you count six sign changes. Therefore, 
you conclude that the polynomial has six positive roots, four 
positive roots, two positive roots, or none at all. When a root, 
such as x = 3 in the previous example, occurs more than once, 
you say that the root has multiplicity two or three or however 
many times it appears. This way, if you count the root as 
many times as it appears, the total will correspond to your 
predicted number.

Counting the possible number of negative roots
Along with the positive roots (see the previous section), 
Descartes’ rule of signs deals with the possible number of 
negative roots of a polynomial. After you count the possible 
number of positive roots, you combine that value with the 
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number of possible negative roots to make your guesses and 
solve the equation.

 

Descartes’ rule of signs (part II): The polynomial 

 has at most n 
roots. Find f(–x), and then count the number of times the sign 
changes in f(–x) and call that value q. The value of q is the 
maximum number of negative roots of f. If the number of nega-
tive roots isn’t q, the number is q – 2, q – 4, and so on, for as 
many multiples of 2 as necessary. Again, you count a multiple 
root as many times as it occurs when applying the rule.

 

Determine the possible number of negative roots of the poly-
nomial f(x) = 2x7 – 19x6 + 66x5 – 95x4 + 22x3 + 87x2 – 90x + 27.

You first find f(–x) by replacing each x with –x and simplifying:

f(–x) = 2(–x)7 – 19(–x)6 + 66(–x)5 – 95(–x)4 + 22(–x)3 + 
87(–x)2 – 90(–x) + 27 = –2x7 – 19x6 – 66x5 – 95x4 – 22x3 + 
87x2 + 90x + 27

As you can see, the function has only one sign change, from 
negative to positive. Therefore, the function has exactly one 
negative root — no more, no less. In fact, this negative root 
is –1.

 

Knowing the potential number of positive and negative roots 
for a polynomial is very helpful when you want to pinpoint an 
exact number of roots. The example polynomial I present in 
this section has only one negative real root. That fact tells you 
to concentrate your guesses on positive roots; the odds are 
better that you’ll find a positive root first.

Finding Roots Synthetically
You use synthetic division to test the list of possible roots for 
a polynomial that you come up with by using the rational root 
theorem. Synthetic division is a method of dividing a polyno-
mial by a binomial, using only the coefficients of the terms. 
The method is quick, neat, and highly accurate — usually 
even more accurate than long division, because it has fewer 
opportunities for “user error.” 
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Using synthetic division when 
searching for roots
When you use synthetic division to look for roots in a polyno-
mial, the last number on the bottom row of your synthetic divi-
sion problem is the telling result. If that number is 0, the divi-
sion had no remainder, and the number is a root. The fact that 
there’s no remainder means that the binomial represented by 
the number is dividing the polynomial evenly. The number is a 
root because the binomial is a factor of the polynomial.

 

Use synthetic division, the rational root theorem, and 
Descartes’ rule of signs to find roots of the polynomial 
f(x) = x5 + 5x4 – 2x3 – 28x2 – 8x + 32.

Using the rational root theorem, your list of the potential 
rational roots is ±1, ±2, ±4, ±8, ±16, and ±32.

Then, applying Descartes’ rule of signs, you determine that 
there are two or zero positive real roots and three or one 
negative real roots.

Here are the steps for performing synthetic division on a poly-
nomial to find its roots:

 1. Write the polynomial in order of decreasing powers 
of the exponents. Replace any missing powers with 0 
to represent the coefficient.

  In this case, you’ve lucked out. The polynomial is 
already in the correct order: f(x) = x5 + 5x4 – 2x3 – 
28x2 – 8x + 32.

 2. Write the coefficients in a row, including the zeros.

  1 5 –2 –28 –8 32

 3. Put the number you want to divide by in front of the 
row of coefficients, separated by a half-box. Then 
draw a horizontal line below the row of coefficients, 
leaving room for numbers under the coefficients.

  In this case, my guess is x = 1.
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 4. Bring the first coefficient straight down below the 

line. Then multiply the number you bring below the 
line by the number that you’re dividing into every-
thing. Put the result under the second coefficient.

  

 5. Add the second coefficient and the product, putting 
the result below the line.

  

 6. Repeat the multiplication/addition with the rest of 
the coefficients.

  

The last entry on the bottom is a 0, so you know 1 is a root. 
Now, you can do a modified synthetic division when testing 
for the next root; you just use the numbers across the bottom. 
(These values are actually coefficients of the quotient, if you 
do long division; see the following section.)

If your next guess is to see if x = –1 is a root, the modified syn-
thetic division appears as follows:

The last entry on the bottom row isn’t 0, so –1 isn’t a root.

The really good guessers amongst you decide to try x = 2, 
x = –4, x = –2, and x = –2 (a second time). These values repre-
sent the rest of the roots.
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Synthetically dividing 
by a binomial
Finding the roots of a polynomial isn’t the only excuse you 
need to use synthetic division. You can also use synthetic 
division to replace the long, drawn-out process of dividing a 
polynomial by a binomial. The polynomial can be any degree; 
the binomial has to be either x + c or x – c, and the coefficient 
on the x is 1. This may seem rather restrictive, but a huge 
number of long divisions you’d have to perform fit in this cat-
egory, so it helps to have a quick, efficient method to perform 
these basic division problems.

To use synthetic division to divide a polynomial by a bino-
mial, you first write the polynomial in decreasing order 
of exponents, inserting a 0 for any missing exponent. The 
number you put in front or divide by is the opposite of the 
number in the binomial.

 

Divide 2x5 + 3x4 – 8x2 – 5x + 2 by the binomial x + 2 using syn-
thetic division.

Using –2 in the synthetic division:

As you can see, the last entry on the bottom row isn’t 0. If 
you’re looking for roots of a polynomial equation, this fact 
tells you that –2 isn’t a root. In this case, because you’re work-
ing on a long division application, the –36 is the remainder of 
the division — in other words, the division doesn’t come out 
even.

You obtain the answer (quotient) of the division problem 
from the coefficients across the bottom of the synthetic divi-
sion. You start with a power one value lower than the original 
polynomial’s power, and you use all the coefficients, dropping 
the power by one with each successive coefficient. The last 
coefficient is the remainder, which you write over the divisor.
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Here’s the division problem and its solution. The original 
division problem is written first. Under the problem, you see 
the coefficients from the synthetic division written in front of 
variables — starting with one degree lower than the original 
problem. The remainder of –36 is written in a fraction on top 
of the divisor, x + 2.
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